Douglas E. Bernard JPL Steve A. Chien JPL Scott Davies **CMU** Gregory A. Dorais Ames JPL Richard Doyle Dan Dvorak JPL Charles Fry Ames Edward B. Gamble Jr. **JPL** Frann Gat **JPL** Bob Kanefsky Ames Ron Keesing Ames Jim Kurien Ames **JPL** Guy K. Man William Millar Ames Sunil Mohan Ames **Paul Morris** Ames Nicola Muscettola Ames P. Pandurang Nayak Ames Barney Pell Ames **Christian Plaunt** Ames Greg Rabideau JPL Kanna Rajan Ames JPL Bob Rasmussen JPL Nicholas Rouquette Scott Sawyer Ames **CMU Reid Simmons** Benjamin Smith JPL **Gregg Swietek** Ames William Taylor Ames Yu-Wen Tung JPL Michael Wagner Ames CMU Greg Whelan Brian C. Williams Ames David Yan **JPL**

REMOTE AGENT EXPERIMENT

Nicola Muscettola

NASA Ames Research Center

mus@ptolemy.arc.nasa.gov

http://rax.arc.nasa.gov

Remote Agent: an architecture for autonomy

Levels of autonomy

Level	Ground System	On-Board Planner	On-Board Exec
1	Prepare real-time commands	None	None (executed w/o Exec involvement)
2	Prepare sequence	None	Execute sequence
3	Prepare plan, upload to Exec as script	None	Execute plan; "Scripted mode"
4	Prepare plan, upload to planner as goals	Confirm and pass thru the planner	Execute plan; "Planner Mode"
5	Prepare plan including some unexpanded goals	Complete the plan	Execute plan
6	Define goals	Prepare plan	Execute plan

Summary of RA testing

Platform	Fidelity	CPU/OS	Hardware	Availability	Speed	Number of Tests
DS1 Spacecraft	Highest	RAD6000 VxWorks	Flight	1 for DS1	1:1	1
DS1 Testbed	High	RAD6000 VxWorks	Flight spare + DS1 sims	1 for DS1	1:1	1
Hotbench	High	RAD6000 VxWorks	Flight spare + DS1 sims	1 for DS1	1:1	10
Papabed	Medium	RAD6000 VxWorks	DS1 sims only	1 for DS1	1:1	10
Radbed	Low	RAD6000 VxWorks	RAX sims only	1 for RAX	1:1	~20
Babybed	Very low	PPC VxWorks	RAX sims only	2 for RAX	7:1	>300
UNIX	Lowest	SPARC UNIX	RAX sims only	unlimited	35:1	269 (PS only)

Flight experiment: first day

Flight experiment: simulated plan failure

Flight experiment: replanning

Flight experiment: second day

Some answers to a project manager

- What does RA buy me?
 - It lowers operations costs and it enables new kind of missions.
- Does RA require more precise hardware models earlier than with normal flight software?
 - Models need to be acquired early but they are abstract and remain valid and operational throughout the project
- Is RA hard to test?
 - RA is flight software and flight software is hard to test.
 - Inference engines (reusable) may require formal validation.
 - RA's high level functions can be separately tested on low-fidelity testbeds.
- What parts of operations is RA suited for?
 - The experiment demonstrated use in cruise for a reduced spacecraft. Scaleup to a full spacecraft is likely linear.
 - Some RA components (EXEC and MIR) could already be useful on-board for critical mission phases. PS could be used during critical sequence design.
 - Full demonstration on critical mission phases will require flight test

The Future

- Some RA concepts are being adopted by other projects such as MDS.
- A vibrant research and development program is underway at Ames to further develop RA technologies
 - MIR and PS have been re-implemented/extended in C++
 - Redesign and port of EXEC to C++ is underway
 - MIR is being deployed on X34 and X37 flight experiments
 - EXEC and MIR are being used in the JPL interferometry testbed
- Stay tuned ...http://rax.arc.nasa.gov

